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Abstract. Convex relaxations can be used to obtain lower bounds on the optimal objective function
value of nonconvex quadratically constrained quadratic programs. However, for some problems,
significantly better bounds can be obtained by minimizing the restricted Lagrangian function for
a given estimate of the Lagrange multipliers. The difficulty in utilizing Lagrangian duality within
a global optimization context is that the restricted Lagrangian is often nonconvex. Minimizing a
convex underestimate of the restricted Lagrangian overcomes this difficulty and facilitates the use
of Lagrangian duality within a global optimization framework. A branch-and-bound algorithm is
presented that relies on these Lagrangian underestimates to provide lower bounds and on the interval
Newton method to facilitate convergence in the neighborhood of the global solution. Computational
results show that the algorithm compares favorably to the Reformulation–Linearization Technique
for problems with a favorable structure.
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1. Introduction

In this paper, we focus on the quadratically constrained quadratic program with
bounded variables:

(QCQP)z∗ = Min f 0(x)

subject to f i(x) � bi, i = 1, . . . , m

−∞ < � � x � u <∞,
where f i(x) = cTi x + xTQix, i = 0, 1, . . . , m. Without loss of generality, it
can be assumed that matrices Qi, i = 0, . . . , m are symmetric. Quadratically
constrained problems are worthy of study both because they frequently appear in
applications and because many other nonlinear problems can be transformed into
this form.

When each function f i(x) is convex, then efficient algorithms are available
for solving QCQP. For the remainder of this paper, we assume that QCQP is
nonconvex. While solving problems of this sort is known to be NP-hard, many
practical applications possess a relatively favorable structure that can be exploited.
In particular, oftentimes the matrices Qi, i = 0, . . . , m are relatively sparse.
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Examples of sparse nonconvex QCQPs can be found in engineering and oper-
ations research literature. Robust control seeks to ensure that controllers will per-
form adequately even in the presence of uncertainty regarding the current state of
the system. The design of robust controllers minimizes a linear or convex quadratic
function subject to bilinear constraints which typically have very few nonlinear
terms [12, 19]. The pooling problem arises in petroleum refining where various
input streams are blended together to form a pool whose qualities depend on the
amount of each input. The resulting optimization model minimizes a linear func-
tion subject to linear and bilinear constraints [8, 16]. Once again, the bilinear con-
straints contain relatively few nonlinear terms. In antenna array signal processing,
the goal is to minimize undesired noise sources while preserving the desired signal.
The corresponding optimization problem minimizes a convex quadratic function
subject to several linear constraints and a few quadratic equality constraints of very
low rank [23, 17]. Stackelberg games feature two players, a leader and a follower.
The leader makes a decision in anticipation of the follower’s reaction, while the
follower’s decision space depends on the leader’s strategy. This can be modeled
as a bilevel programming problem and, under certain conditions, is equivalent to
minimizing a concave objective function subject to separable quadratic constraints
[2].

Finding provably global solutions to problems of this sort is difficult. Provably
convergent outer approximation algorithms can be applied to QCQP. However, thus
far these methods are shown to be practical only for very small problem sizes [10].
The GOP algorithm, a decomposition approach which converts the original prob-
lem into primal and relaxed dual subproblems, has proven to be well-suited for
quadratically constrained problems [26]. Another global optimization algorithm
which is suitable for these problems is the Reformulation–Linearization Technique
(RLT) [22]. RLT uses the upper and lower bounds on the decision variables to
generate a linear relaxation of the original problem. A natural extension of this
approach is to generate convex, rather than linear, relaxations [21, 20].

In this paper, we present a global optimization algorithm that relies on Lag-
rangian duality to generate lower bounds on the optimal objective function value.
Lagrangian duality is a well-known optimization tool that can be employed in
wide variety of contexts. Assuming that only the complex constraints of QCQP
are dualized, its Lagrangian function is given by

φ(x, v) = f 0(x)+
m∑
i=1

(vi[f i(x)− bi]),

where v is the vector of dual variables. The Lagrangian dual problem of QCQP is

max
v�0

�(v) = min
x∈X{φ(x, v)},

where X = {x : � � x � u}. Any feasible dual solution v̂ yields a lower bound
of �(v̂) on z∗, the optimal objective function value of QCQP. Since QCQP is
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nonconvex, �(v∗), the objective function value of the optimal dual solution v∗,
will not necessarily equal z∗.

Two difficulties arise in attempting to use Lagrangian duality to solve a non-
convex problem. The first is the duality gap; solving the dual does not necessarily
yield the primal solution. Given a nonconvex objective function ψ and linear con-
straints, Falk [7] showed that the solution of the Lagrangian dual problem yields
the minimum of the convex envelope of ψ , rather than the minimum of ψ , over the
constraint set. He suggests utilizing Lagrangian duality within a branch-and-bound
framework that partitions the feasible region.

More recently, other researchers have extended this idea of combining Lag-
rangian duality with a partitioning strategy. Ben-Tal et al. [5] proved that making a
sufficiently fine partition will ensure that the duality gap is less than any specified
tolerance ε. Similarly, Dur and Horst [6] prove that, for very general classes of
nonconvex programs, the duality gap obtained by solving the Lagrangian dual is re-
duced to zero in the limit when combined with a suitably refined partitioning of the
feasible set. Barrientos and Correa [3] derive a similar result. In each paper, these
results motivate a convergent branch-and-bound algorithm that uses Lagrangian
duality to generate bounds.

While a suitable partitioning strategy can overcome the duality gap, the second
difficulty with using Lagrangian duality for global optimization is that it requires
the minimization of a nonconvex function. Thus, it typically is proposed for prob-
lems whose structure ensures a tractable minimization subproblem. The papers
mentioned in the previous paragraph provide a nice illustration of this. Ben-Tal
et al., solve pooling problems using an enumeration strategy that exploits the bi-
linear constraints of these problems. Dur and Horst [6] also consider bilinearly
constrained problems, including nonconvex programs which can be transformed
into this from. They also analyze concave minimization under reverse convex con-
straints, whose dual subproblems can also be solved by vertex enumeration. To
minimize a general nonconvex function over a polytope, they use a convex envel-
ope construction to ensure that the dual function generates a valid lower bound.
Barrientos and Correa [3] transform quadratic programs so that their objective
functions are separable. The Lagrangian subproblem thus reduces to the minim-
ization of a separable quadratic function over variable bounds.

Additional applications of Lagrangian duality further underscore that its utility
for global optimization often relies on exploiting problem structure to successfully
minimize the nonconvex subproblem. Adhya et al. [1] prove that the constraint
structure of the pooling problem implies that its Lagrangian subproblem will have
an optimal solution in which every variable is at one of its bounds. This allows them
to transform the nonconvex program into a mixed-integer program that is tractable
for reasonably sized problems. Kuno and Utsunomiya [14] apply Lagrangian dual-
ity to production–transportation problems. They show that their dual problem can
be broken down into m subproblems, each of which sums a concave function and n
piecewise affine functions. These can be minimized by comparing function values
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at the relevant break points in the affine functions. In the absence of a tractable
nonconvex subproblem, Lagrangian relaxation can be used for global minimization
either by applying it to a linearization or convexification of the original problem
[21] or by developing a global search strategy that escapes local minimums [27].

Rather than finding the Lagrangian of the convexification of QCQP, we consider
the convexification of the Lagrangian of QCPQ. Li and Sun [15] have also pro-
posed utilizing a convexification of the Lagrangian. They consider the ‘p-power’
Lagrangian, which is the Lagrangian of the modified program

min
x∈X [f

0(x)]p s.t. [f i(x)]p � bpi , ∀ i.

They show that, under certain conditions, the Hessian of the p-power Lagrangian
is positive definite at a local minimum for sufficiently large p. They use this res-
ult to demonstrate the local optimality of a solution at which the Hessian of the
Lagrangian is not positive definite.

The main advantage of the approach presented here is the relative ease with
which the proposed convexification of the Lagrangian can be minimized over bound
constraints. This allows it to be naturally incorporated into a branch-and-bound
scheme. An exhaustive partitioning process guarantees that the convexification of
the Lagrangian approaches the Lagrangian, so it is not surprising that algorithm
can be shown to converge to the global solution.

In section two, convex relaxations of QCQP are compared to convex underes-
timates of the restricted Lagrangian. Section three describes a branch-and-bound
algorithm which uses these convex underestimates to provide lower bounds on
the problem’s optimal objective function value within a given partition of the ori-
ginal feasible region. Section four provides computational results, comparing the
performance of the algorithm presented in section three with a rudimentary imple-
mentation of RLT. Section five discusses relevant computational issues, and section
six provides some initial conclusions and directions for additional research in this
area.

2. Convex relaxations and convex underestimates

Several techniques can be used to generate convex relaxations of nonconvex pro-
grams [21, 20]. Here we restrict our discussion to convex relaxations which can
be derived without introducing additional variables or constraints. Assuming Qi is
not positive semi-definite, let λimin < 0 be its smallest eigenvalue. If γ is a constant
that satisfies γ + λimin > 0, then the matrix γ I + Qi is positive definite. Adding
and subtracting xT (γ I )x to f i(x) allows f i(x) to be expressed as the difference
of two convex functions:

f i(x) = cTi x + xTQix = cTi x + xT (γ I +Qi)x − γ xT x.
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Variable bounds can be used to generate a linear underestimate of −γ xT x:

γ (u− x)T (x − �) � 0

γ (uT x − uT �− xT x + xT �) � 0

γ ((u+ �)T x − uT �) � γ xT x − γ ((u+ �)T x − uT �) � −γ xT x
Since xT (γ I +Qi)x is convex, this inequality leads to a convex underestimate for
f i(x):

f i(x) = cTi x + xT (γ I +Qi)x − γ xT x � cTi x + xT (γ I +Qi)x
− γ ((u+ �)T x − uT �).

An alternative approach is to generate a convex underestimate for each indi-
vidual nonconvex term [24]. Define the index sets J+i = {j : qijj � 0}, J−i = {j :
qijj < 0}, K+i = {(j, k) : qijk � 0} and K−i = {(j, k) : qijk < 0}. Using these sets,
function f i(x) can be written in summation form:

f i(x) =
n∑
j=1

cij xj +
∑
J+i

qijj x
2
j +

∑
J−i

qijj x
2
j + 2

∑
K+i

qijkxjxk + 2
∑
K−i

qijkxj xk

=
n∑
j=1

cij xj +
∑
J+i

qijj x
2
j −

∑
J−i

|qijj |x2
j + 2

∑
K+i

qijkxjxk − 2
∑
K−i

|qijk|xjxk

Convex underestimates for each xjxk term are generated by using two relation-
ships:

2qijkxj xk = qijk(xj + xk)2 − qijk(x2
j + x2

k ) (1)

−2|qijk|xjxk = |qijk|(xj − xk)2 − |qijk|(x2
j + x2

k ) (2)

Substituting these equations into the expression for f i(x) yields

f i(x) =
n∑
j=1

cijxj +
∑
J+i

qijj x
2
j −

∑
J−i

|qijj |x2
j +

∑
K+i

qijk[(xj + xk)2 − (x2
j + x2

k )]

+
∑
K−i

|qijk|[(xj − xk)2 − (x2
j + x2

k )].

To simplify this expression, let

pij =




∑
k �=j
|qijk| + |qijj |, j ∈ J−i

∑
k �=j
|qijk|, otherwise.
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Now f i(x) can be expressed as

f i(x) =
n∑
j=1

cijxj +
∑
J+i

qijj x
2
j +

∑
K+i

qijk(xj + xk)2

+
∑
K−i

|qijk|(xj − xk)2 −
n∑
j=1

pijx
2
j .

Using the inequality

(uj − xj )(xj − �j) � 0 �⇒ (uj + �j )xj − uj�j � x2
j ,

and the fact that pij � 0, it follows that

−pij x2
j � −pij ((uj + �j )xj − uj�j ).

It is easily shown that, for qijk � 0, both qijk(xj + xk)2 and |qijk|(xj − xk)2 are
convex. Thus, the following inequality provides a convex underestimate of f i(x):

f i(x) �
n∑
j=1

([cij − pij (uj + �j)]xj + pij �juj )+
∑
J+i

qijj x
2
j

+
∑
K+i

qijk(xj + xk)2 +
∑
K−i

|qijk|(xj − xk)2 (3)

This convex underestimate for the nonlinear term xjxk has an intuitively appeal-
ing geometric interpretation. Consider the case where 0 � xj , xk � 10. The term
xjxk = 0 at the points (xj , xk) = (0, 10) and (xj , xk) = (10, 0). Thus, any convex
underestimate of xjxk must be � 0 for each point on the line between these two
points, including the point (xj , xk) = (5, 5).

With this in mind, consider the convex underestimate of xjxk along the line xj =
xk. At (xj , xk) = (5, 5), the convex underestimate must be � 0. In order for the
underestimate to be tight at the variable bounds, it must equal 0 at (xj , xk) = (0, 0)
and must equal 100 at (xj , xk) = (10, 10). The convex underestimate proposed
above,

xjxk � f (xj , xk) = 1

2
[(xj + xk)2 − 10xj − 10xk],

is the quadratic curve that connects the three points (f (xj , xk), xj , xk) = (0, 0, 0),
(0, 5, 5) and (100, 10, 10) along the line xj = xk . This is illustrated in Figure 1.
This figure also shows that a tighter underestimate is generated using the tangent
lines to the curve xjxk at the lower and upper bounds. This tighter underestimate is
the one generated by RLT.
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Figure 1. Convex underestimate of xj xk along the line xj = xk .

The quality of the lower bound generated by these convex relaxations depends
on the structure of the problem. It generates the convex envelope of concave terms
and easily incorporates convex terms, which a linearization approach such as RLT
relaxes. (Certainly RLT can be extended to retain convex terms [21], but linear
relaxations remain an attractive alternative because of the availability and quality
of linear programming software.) Since RLT provides the convex envelope of a
bilinear term over a box, it will always dominate any other convex relaxation of
these terms. In this case, the only advantage of the convex relaxations given above
is that they do not require any additional variables or constraints.

On the other hand, if a problem contains both convex and nonconvex terms,
convex underestimates of the Lagrangian can yield a significantly better bound than
RLT, even if RLT is extended to retain convex terms. As an illustration, consider
the following problem:

(EX1) Min 6x2
1 + 4x2

2 + 5x1x2

subject to − 6x1x2 � −48

0 � x1, x2 � 10

The optimal solution to EX1 is (x1, x2) = (2.5558, 3.1302), which yields an
objective function value of 118.384. Using equation (3) to generate convex un-
derestimates of the objective and constraint functions over the region defined by
the upper and lower bounds on x1 and x2 yields a convex program:

Min 6x2
1 + 4x2

2 + 2.5(x1 + x2)
2 − 2.5(10x1 + 10x2)

s.t. 3(x1 − x2)
2 − 3(10x1 + 10x2) � −48

0 � x1, x2 � 10

The optimal solution of this convex program, (x1, x2) = (1.02, 1.53), yields a
relatively poor lower bound of −31.9 on the optimal objective function value of
EX1.
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A much better lower bound of 46.4 is generated by extending RLT to include
convex terms:

Min 6x2
1 + 4x2

2 + 5w12

s.t. − 6w12 � −48

max{0, 10x1 + 10x2 − 100} � w12 � min{10x1, 10x2}
0 � x1, x2 � 10.

The solution to this convex program is (x1, x2, w12) = ( 4
5 ,

4
5 , 8).

For this problem, convex underestimates of the Lagrangian can yield a much
better bound than RLT. By dualizing only the nonlinear constraint, the Lagrangian
dual problem of EX1 is

max
v

�(v), where

�(v) = inf
x
{6x2

1 + 4x2
2 + 5x1x2 + v(48− 6x1x2) : 0 � x1, x2 � 10}.

Any value of v � 0 provides a lower bound on z∗; for example, if v = 7
3 , the re-

stricted Lagrangian L(x) = φ(x, 7
3) is minimized at (x1, x2) = (0, 0) with�( 7

3) =
112. Equation (3) provides a convex underestimate L̂(x) of L(x) = φ(x, 7

3):

L(x) = 6x2
1 + 4x2

2 (5−
7

3
× 6)x1x2 + 7

3
× 48

= 6x2
1 + 4x2

2 +
9

2
(x1 − x2)

2 − 9

2
(x2

1 + x2
2)+ 112

= 3

2
x2

1 −
1

2
x2

2 +
9

2
(x1 − x2)

2 + 112

L(x) � L̂(x) = 3

2
x2

1 −
1

2
(10x2)

9

2
(x1 − x2)

2 + 112

Within the region 0 � x1, x2 � 10, L̂(x) is minimized at (x1, x2) = ( 5
3 ,

20
9 ), at

which point L̂(x) = 1064
9 . Table 1 gives the values of x1 and x2 that minimize

L̂(x) over X and the corresponding value of L̂(x) as functions of v.
The formulas in Table 1 imply that the convex underestimate of the Lagrangian

generates a better bound than RLT for all v ∈ [0.967, 2.621].
Convex underestimates of the Lagrangian can be seen to offer significant ad-

vantages over other approaches. Like the convex relaxations, it does not require
additional variables or constraints, as does RLT. In many instances, RLT will yield
better bounds than convex underestimates of the Lagrangian, but, as EX1 demon-
strates, the underestimates can also yield better bounds than RLT. Obviously, min-
imizing the Lagrangian function itself would provide better bounds than an un-
derestimating function. However, efficient nonlinear programming methods for
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Table 1. Bounds generated for various values of v

v x1 x2 L̂(x)

0 � v � 13

6
0 0 48v

13

6
� v � 2.5914

60(6v − 13)

(6v − 5)(17 − 6v)

5(6v − 13)

(17 − 6v)
48v − 150(6v − 13)2

(17− 6v)(6v − 5)

2.5914 � v � 17

6

5

6
(6v − 5) 10 295

5

6
+ 298v − 150v2

v � 17

6
10 10 1500 − 552v

minimizing nonconvex functions do not necessarily identify the global minimum.
Using convex underestimates eliminates this concern and thus allows Lagrangian
duality to be naturally incorporated into a global optimization framework.

3. A Branch-and-Bound Algorithm

A branch-and-bound algorithm was developed that relied on convex underestimates
of the Lagrangian to generate lower bounds on the optimal objective function value.
This algorithm integrates three techniques for solving nonlinear problems.
(1) Lagrangian underestimates are used to provide lower bounds.
(2) Newton’s method is used to obtain local solutions to the primal problem.
(3) The interval Newton method is used to facilitate convergence to the global

solution.
As its name indicates, the interval Newton method is similar to Newton’s method

for solving systems of equations. While Newton’s method begins with a vector
of values xk and finds a new vector of values xk+1, the interval Newton method
begins with a vector of intervals Xk and finds a new vector of intervals Xk+1. A full
description of the method can be found in [11]. Like Newton’s method, the interval
Newton method does not always converge. However, unlike Newton’s method,
when the interval Newton method is successful, it allows a strong conclusion to
be made regarding the original bounded region X0.
(1) If Xk+1 ∩ Xk = ∅, then X0 does not contain any solution to the given system

of equations.
(2) If the sequence of interval vectors collapses to a single point, then that point is

the only solution to the given system of equations within X0.
The algorithm presented below will subsequently be referred to as the LagInt
algorithm. Notationally, Bi is the hyperrectangular region defined by upper and
lower bound vectors ui and �i . Let lbi be the lower bound on the optimal objective
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function value within Bi , and vi be the current estimate of the Lagrange multipliers
within Bi . Let lb and ub be the overall lower and upper bounds on the problem’s
optimal objective function value. Since � and u are finite, an initial value for lb
can be computed using interval arithmetic. No true upper bound can be computed,
since any given problem instance could be infeasible. However, we can compute
an upper bound on the value of the objective function f 0(x) over B1. This number
is useful, since it allows us to fathom infeasible regions.

LAGINT ALGORITHM FOR SOLVING QCQP

Initialization Let �1 = � and u1 = u, S = {B1}, v1 = 0, Compute initial values for
lb and ub using interval arithmetic. Set cnt to some positive integer.

Iteration k
(1) j ← arg mini{lbi : Bi ∈ S}.
(2) Find lower bounds for region Bj :

h← 1, v1 ← vj , and z0 = lbj .
while h � cnt , lbj < ub and zh > zh−1 do

L(x) = f 0(x)+
m∑
i=1

vhi (f
i(x)− bi)

and L̂(x) be a convex underestimate of L(x) .

xh← arg min{L̂(x) : x ∈ Bi} and zh← min{L̂(x) : x ∈ Bi}
If h = 1 or zh > lbj , x̂ ← xh and v̂← vh.
If zh > lbj , lbj ← zh

If lbj > ub, then S ← S \ Bj and go to 6.
If xh is feasible and f 0(xh) � ub, ub ← f 0(xh) and update incumbent

solution

ξhi =
{
f i(xh), f i(xh) > 0 or vhi > 0
0, otherwise.

If h = 1, dh = ξh, else dh = ξh + ‖ξh‖
‖dh−1‖d

h−1.

vh+1
i = max{0, vhi + λhdhi (x)}, where λh is the step-size parameter.
h← h+ 1

(3) Perform range reduction tests [18] to decrease the width of the interval [�j , uj ]
for each xj .

(4) Using x̂ and v̂ as primal and dual starting points, apply Newton’s method to
solve the Karush–Kuhn Tucker necessary conditions. If a feasible solution
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is found with a better objective function value than the incumbent solution,
update ub and the incumbent solution.

(5) Apply the interval Newton method to find all solutions to the Fritz-John op-
timality conditions contained in Bj . If the interval Newton method identifies a
feasible solution with a better objective function value than the incumbent solu-
tion, update ub and the incumbent solution. If the interval Newton method con-
verges to a single point or proves that no solution to the optimality conditions
exists within Bj , then S ← S \ Bj .
Otherwise partition Bi into two subregions: B2k and B2k+1 using any exhaust-
ive partitioning process. Let lb2k = lb2k+1 = lbj and v2k = v2k+1 = vh.

S ← S \ Bj ∪ {B2k, B2k+1}
(6) If S = ∅, stop. If an incumbent solution has been found, then the algorithm

has found an optimal solution. Otherwise, the problem is infeasible. If |S| � 1,
goto 1.

PROPOSITION 3.1. Given a feasible instance of QCQP, if the algorithm termin-
ates, it terminates with the global optimal solution.

Proof. If S = ∅, then one of the following three statements must be true for each
region Bj at the bottom of the branch-and-bound tree.
(1) The Interval Newton method demonstrates that there are no points within the

region that satisfy necessary conditions for optimality.
(2) The Interval Newton method identifies the only point within the region which

satisfies the necessary conditions.
(3) The lower bound generated by the convex underestimate of the Lagrangian,

lbj , is greater than ub. If an incumbent solution has been found, then lbj is
greater than the objective function value of a feasible solution to the primal
problem. Otherwise, the lower bound lbj is greater than the largest possible
objective function value of any feasible solution.

If an incumbent solution exists, its optimality follows immediately. Otherwise, the
problem must be infeasible. �

If the algorithm does not terminate in a finite number of iterations, then a
slightly modified version of the given algorithm can be shown to converge to the
optimal solution. The globally convergent version of the algorithm differs from the
given LagInt algorithm in two particulars:
(1) cnt = 1, which implies that dh = ξh, ∀ h.
(2) For each region Bj , let tj be its level within the branch-and-bound tree (i.e. if

Bj has three ancestors, then tj = 4). Make λh← 1
t j

and

vh+1 = Pv�0[vh + λh dh

‖ dh ‖],

where Pv�0 is the projection of vh + λh dh

‖dh‖ onto {v : v � 0}.
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This modification maximizes the dual function using a step-size chosen to sat-
isfy the well-known divergent series rule (i.e. λh → 0 and

∑∞
h=1 λh = ∞). First,

we show that the convex underestimates of the Lagrangian converge to the Lag-
rangian.

LEMMA 3.1. Let ψ be any infinite path down the branch-and-bound tree, and
let {vψ(k)}∞k=1 be the infinite sequence of dual solutions found for nested partitions
Bψ(1) ⊃ Bψ(2) ⊃ Bψ(3) . . . along path ψ . If Lψ(k)(x) is the Lagrangian function
given multipliers vψ(k) and L̂ψ(k)(x) is the convex underestimate developed using
the method described in section two, then limk→∞(Lψ(k)(x)− L̂ψ(k)(x)) = 0.

After removing common terms, we have

Lψ(k)(x)− L̂ψ(k)(x) = −
n∑
j=1

pjx
2
j − (−

n∑
j=1

pj [(�ψ(k)j + uψ(k)j )xj − �ψ(k)j u
ψ(k)

j ])

=
n∑
j=1

pj ([�ψ(k)j + uψ(k)j ]xj − �ψ(k)j u
ψ(k)

j − x2
j )

=
n∑
j=1

pj (xj − �ψ(k)j )(u
ψ(k)

j − xj )

The exhaustive partitioning process ensures that limk→∞(u
ψ(k)

j − �ψ(k)j ) = 0. This

implies that limk→∞(xj − �ψ(k)j ) = limk→∞(u
ψ(k)

j − xj ) = 0, ∀ xj ∈ [�ψ(k), uψ(k)]
and thus that limk→∞(Lψ(k)(x)− L̂ψ(k)(x)) = 0. �

Next, we characterize the limit point of the sequence of dual solutions.

LEMMA 3.2. Let limk→∞ vψ(k) = v̄ψ . Let {xψ(k)}∞k=1 be the sequence of primal
solutions along path ψ , with x̄ψ = limk→∞ xψ(k). If f i(x̄ψ ) < bi , then v̄ψi = 0.

Let εi = bi − f i(x̄ψ ) > 0 and let α be any constant satisfying 0 < α < 1.
Since f i(x) is continuous and limk→∞(uψ(k) − �ψ(k)) = 0, there will eventually

be some k̂ such that bi − f i(x) � αεi, ∀ x ∈ Bψ(k), k � k̂. Thus, vψ(k̂+1)
i �

max{0, vψ(k̂) − λψ(k̂)(αεi)} and vψ(k̂+r)i � max{0, vψ(k̂) − (αεi)(∑r−1
j=0 λψ(k̂+j))}.

Since
∑∞
j=0 λψ(k̂+j) = ∞, it is clear that limk→∞ v

ψ(k)

i = 0. �
Third, we show that the limit point of any infinite subsequence is feasible.

LEMMA 3.3. The limit point x̄ψ of any infinite subsequence {xψ(k)}∞k=1 is feasible.
Proof. Assume for the sake of contradiction that the limit point x̄ψ of an in-

finite sequence is infeasible. This means that there is some constraint i for which
f i(x̄ψ ) − bi = εi > 0. Once again, given some constant α ∈ (0, 1), the con-
tinuity of f i(x) and the exhaustive partitioning process ensure that there is some
k̂ for which f i(x) − bi � αεi, ∀ x ∈ Bψ(k), k � k̂. Thus, the dual solution
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v
ψ(k̂+r)
i � vψ(k̂) + (αεi)(∑r−1

j=0 λψ(k̂+j)). Since
∑∞
j=0 λψ(k̂+j) = ∞, it is clear that

limk→∞ v
ψ(k)

i = ∞. Lemma 3.2 ensures that as k → ∞, no constraint which
is satisfied with slack has a nonzero multiplier. This implies that limk→∞ Lψ(k) �
limk→∞(f 0(xψ(k))+vψ(k)i [f i(xψ(k))−bi]). Since f 0(x) is bounded, f i(x̄ψ )−bi =
εi and limk→∞ v

ψ(k)

i = ∞, then limk→∞ Lψ(k) = ∞. Lemma 3.1 implies that
limk→∞ L̂ψ(k) = limk→∞ Lψ(k) = ∞. However, this is a contradiction, since the
region Bψ(k) would be fathomed when its lower bound exceeded the value of ub.
Thus, there cannot be an infinite subsequence whose limit point is infeasible. �
PROPOSITION 3.2. The limit point x̄ψ of any infinite subsequence is a global
optimal solution.

Proof. Lemma 3.3 ensures that f i(x̄ψ ) � bi, i = 1, . . . , m. Hence, f 0(x̄ψ ) �
z∗. Since the region with the minimum lower bound is selected to be explored
during each iteration, L̂ψ(k) � z∗, ∀ k. Combining this with Lemma 3.1 yields
limk→∞ Lψ(k) = limk→∞ L̂ψ(k) � z∗. As k → ∞, Lemma 3.2 ensures that
complementary slackness will hold and hence limk→∞ Lψ(k) = f 0(x̄ψ ). Thus,
f 0(x̄ψ ) = z∗ and x̄ψ is a global optimal solution. �

4. Algorithmic considerations

While choosing λ using the divergent series rule is theoretically attractive, it tends
to converge slowly. Thus, in the spirit of conjugate gradient methods, the LagInt
algorithm uses an average direction strategy for which dh bisects dh−1 and ξh [4].
A theoretically attractive formula for step-size λh is λh = βh

‖ξh‖(�(v
∗) − �(vh)),

where βh is some small constant [4].
Since the value of �(v∗) is not known, different approaches were used to de-

velop an estimate �̄(v∗) of �(v∗). The one used in the test problems was

�̄(v∗) = L̂(xk)+
n∑
j=1

([uj + �j ]xkj − uj�j − (xkj )2),

where xk = arg min{L̂(x) : x ∈ Bk}.
After an upper bound ub on the optimal primal objective function value had been
found, this estimate �̄(v∗) was updated using the formula �̄(v∗) ← max{�̄(v∗),
1
2�̄(v

∗)+ 1
2ub}.

In Section 2, two methods were discussed for generating a convex underestimate
of a quadratic function. For the test problems, convex underestimates were created
by adding the quadratic form xT Px to restricted Lagrangian L(x) = b + ctx +
xTQx, where P is a diagonal matrix with constants pj = max{0,∑k �=j qjk + ε}
along the diagonal. Here ε is a positive constant that makesQ+P positive definite.
In computational tests, the value ε = 0.25 was used. A linear underestimate of
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the concave term −xT Px is then subtracted from L(x) to complete the convex
underestimate.

For example, let the restricted Lagrangian function be given by

L(x) = 30+ [1, 4, 2]

 x1

x2

x3


+ [x1, x2, x3]


 3 2 1

2 7 4
1 4 3





 x1

x2

x3


 ,

with 2 � x1, x2, x3 � 10.

Using the formula given above,

P =

 0.25 0 0

0 0 0
0 0 2.25




and the convex underestimate of L(x) is

L̂(x) =30+ [1, 4, 2]

 x1

x2

x3


+ [x1, x2, x3]


 3.25 2 1

2 7 4
1 4 5.25




− 0.25(12x1 − 20)− 2.25(12x3 − 20)

=80+ [−2, 4,−25]

 x1

x2

x3


+ [x1, x2, x3]


 3.25 2 1

2 7 4
1 4 5.25





 x1

x2

x3




Another issue is how to best exploit the simple structure of the variable bound
constraints. Initial values for all the dual variables (including those associated with
variable bounds) are used to create the Lagrangian underestimate L̂(x). Given these
initial values, the algorithm attempts to solve the convex program minx{L̂(x) :
�j � xj � uj , j = 1, . . . , n} by making a series of conjectures regarding
which constraints are tight. To illustrate this, consider the previous Lagrangian
underestimate:

L̂(x) = 80+ [−2, 4,−25]

 x1

x2

x3


+ [x1, x2, x3]


 3.25 2 1

2 7 4
1 4 5.25





 x1

x2

x3


 .

Initially, we conjecture that the variable bound constraints are tight if and only if
their corresponding multipliers are nonzero. To illustrate the procedure, assume
that all the multipliers associated with bound constraints are equal to zero. In this
case, we conjecture that none of the bound constraints will be binding and min-
imize L̂(x). The point which minimizes this function is x1 = (0.8343,−3.1770,
4.6426); this point yields the value L̂(x1) = 14.7790.

This point is infeasible since both x1
1 and x1

2 are < 2. Thus, the new conjecture
is that the constraints x1 � 2 and x2 � 2 are tight at the optimal solution, thereby
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allowing the dual variables associated with these constraints, v�1 and v�2, to be
nonzero. Given the conjecture that x1 = x2 = 2, new primal and dual solutions are
found using the necessary conditions for optimality:

∇L̂(x) =

 −2+ 6.5x1 + 4x2 + 2x3

4+ 4x1 + 14x2 + 8x3

−25+ 2x1 + 8x2 + 10.5x3


 =


 19+ 2x3

40+ 8x3

−5+ 10.5x3


 =


 v�1v�2

0


 .

The solution x2, v2 to this system is x3 = 0.4762, v�1 = 19.95 and v�2 = 43.81.
The feasible dual solution generates a much better lower bound on min{L̂(x) : 2 �
xj � 10, j = 1, . . . , n}: L̂(x2) = 139.81.

Since x2
3 < 2, a new conjecture is that v�3 should also be nonzero and x1 =

x2 = x3 = 2. Optimality conditions are

∇L̂2(x) =

 −2+ 6.5x1 + 4x2 + 2x3

4+ 4x1 + 14x2 + 8x3

−25+ 2x1 + 8x2 + 10.5x3


 =


 23

56
16


 =


 v�1v�2
v�3


 .

Both the primal solution x3 = (2, 2, 2) and the dual solution (v�1, v�2, v�3) are
feasible. Thus, x3 minimizes L̂(x) over {x : 2 � x � 10}, with L̂(x3) = 152.

This approach requires an accurate conjecture regarding which bound constraints
are binding. Although there were occasions when no such conjecture was forth-
coming, these occasions were rare, especially after the early iterations of the al-
gorithm. In most cases, this technique provided a computationally efficient tech-
nique for solving min{L̂(x) : � � x � u}.

5. Computational Results

To test the effectiveness of the LagInt algorithm, a series of test problems were
solved of the form

Min f 0(x) =
n∑
j=1

(c0
j xj + q0

j x
2
j )+

n
2∑
j=1

r0
j xj xj+ n2

subject to f i(x) =
n∑
j=1

(cijxj + qij x2
j )+

n
2∑
j=1

rijxj xj+ n2 � bi, i = 1, . . . , m

0 � xj � 10, j = 1, . . . , n.

All objective function coefficients c0
j , q

0
j and r0

j were randomly generated integers
between 1 and 10; all constraint coefficients were randomly generated integers
between −1 and −10. Right-hand side values bi were randomly generated integers
between −60 and −180.

The intent was to generate test problems that were nonconvex, yet, because
they contained relatively few nonlinear terms of the form xjxk, j �= k, possessed a
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favorable structure for the LagInt algorithm. While this structure permits a convex
objective function (although this was not usually the case), each of the nonlinear
constraints is nonconvex. By construction, these problems are feasible. Further-
more, their optimal solutions tended to have relatively few nonzero variables.

For the test problems, the LagInt algorithm was compared to a rudimentary
implementation of the Reformulation–Linearization Technique (RLT). The RLT
procedure implements a branch-and-bound algorithm that uses the RLT linear re-
laxation to generate bounds at each node in the tree. The software package CPLEX
5.0 (the Windows NT version) was used to solve the linear subproblems required
by RLT. Solutions to the RLT linear programs were considered feasible to the ori-
ginal problem if each replacement variable was within 0.0001 of their associated
nonlinear term and no constraint was violated by more than 0.0001. This worth
noting since the time required by RLT depends on this tolerance. Since the LagInt
algorithm relies on the interval Newton method to identify optimal solutions and
fathom the regions containing them, tolerances were not an important issue for
its speed of convergence. All computational tests were performed using a Hewlett
Packard Kayak XU computer with 64 MB of RAM.

Table 2 shows the average time and the average number of iterations required by
both algorithms to solve 10 test problems with a given number of variables (N) and
constraints (M). For both RLT and LagInt, each iteration corresponds to exploring
a single node in the branch-and-bound tree by generating a bound over a given
region Bj .

The LagInt algorithm performs extremely well on the smaller test problems. For
the larger test problems, the two algorithms are quite competitive. Overall, the res-
ults demonstrate that LagInt is able to solve certain favorably structured problems
with upto 30 variables and eight constraints in a reasonable amount of time. There
were no test problems where the algorithm failed due to storage limitations or any
other cause.

Table 3 indicates how CPU time required by LagInt was allocated between
its various key subroutines. Typically about half the time is spent in solving the
Lagrangian subproblems for computing lower bounds. A substantial portion of
LagInt’s computational time was spent implementing the Interval Newton method.
This reflects the method’s struggle to converge for many of the test problems. When
this occurred, the majority of subroutine calls failed to generate a useful result.

LagInt’s generally strong performance is somewhat surprising in light of the
poor initial lower bounds that it generated at the root node, shown in Table 4. In
137 out of the 160 test problems, this lower bound was negative, and it was better
than that obtained using RLT in only four test problems.

Despite the poor initial bounds generated by Lagrangian underestimates, the
number of nodes required by the LagInt algorithm was typically similar to that
required by RLT. This is due in part to the interval Newton method. However, it
also indicates that the lower bounds generated by convex underestimates improve
quickly. Test problem 1D, a problem with N = 6, M = 4 and Z∗ = 55.24,
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Table 2. Average times required by RLT and LagInt algorithms

Average CPU (s) Average no. of Iterations

N M RLT LagInt RLT LagInt

6 4 4.23 0.16 137.4 108.2

10 4 5.29 0.61 167.0 151.6

14 4 26.07 2.09 791.4 230.0

16 4 2.88 1.85 85.6 133.6

18 4 31.11 7.10 882.0 271.6

20 4 27.35 22.20 796.0 641.0

24 4 23.52 21.21 650.4 429.8

30 4 88.40 125.36 2231.6 1418.6

6 8 4.09 0.19 134.6 95.6

10 8 4.66 0.79 147.8 151.0

14 8 34.40 5.58 1012.2 488.4

16 8 12.22 3.68 364.2 308.0

18 8 9.48 16.34 276.6 615.2

20 8 33.94 17.88 952.0 550.2

24 8 16.26 17.39 443.2 404.4

30 8 645.2 296.2 12345 2314

illustrates this improvement. The root node lower bound obtained by RLT was 24.4,
compared to a bound of -93.7 obtained by LagInt using Lagrangian underestimates.
However, as we move down the branch-and-bound tree along the path whose sub-
regions contain the optimal solution, the LagInt bounds compare favorably with
the RLT bounds for nodes at the same level in the tree. This is pictured in Figure 2.
Branching decisions are based on the relaxation’s solution, so the two subregions
are different for each pair of nodes at the same level in their respective trees. Hence,
this comparison does not show that LagInt is generating superior bounds for a given
region. Rather, it illustrates that LagInt’s poor initial bounds do not necessarily
imply poor lower bounds throughout the branch-and-bound tree.

While no general conclusions can be drawn from a single test problem, the
entire set of test problems shows that LagInt can be effective despite poor initial
bounds. This could indicate that the behavior pictured in Figure 2 is not atypical.
If so, this could be because the solutions to the LagInt relaxations generate more
efficient branching decisions than the solutions to the RLT relaxations. This pos-
sibility is supported by considering the solutions to the initial relaxations of the
ten smallest test problems (N = 4 and M = 6). For these problems, the average
Euclidean distance between a given problem’s optimal solution and the solution
to its initial RLT linear relaxation is 5.8, compared to an average distance of 2.5
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Table 3. Breakdown of computational time expended by LagInt algorithm

Total CPU Seconds Percentage of CPU Time Consumed by Implementing

N M (all test problems) Lagrangian Bounds Interval Newton Newton’s Method

6 4 1.6 65 25 10

10 4 6.1 55 39 5.4

14 4 21 54 38 7.8

16 4 19 54 30 16

18 4 71 42 50 7.8

20 4 222 52 42 6.5

24 4 212 45 50 5.6

30 4 1254 52 44 3.9

6 8 1.9 66 21 13

10 8 7.9 57 29 14

14 8 56 45 47 7.4

16 8 37 61 22 17

18 8 163 53 40 7.6

20 8 179 42 50 7.9

24 8 174 48 37 15

30 8 2962 41 56 2.7

Figure 2. Lower bounds generated by LagInt and RLT.
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Table 4. Quality of initial lower bound at
root node

Average root node

= (Z∗ − LB)/Z∗
N M RLT LagInt

6 4 28 % 157 %

10 4 30 % 140 %

14 4 35 % 211 %

16 4 28 % 219 %

18 4 29 % 275 %

20 4 30 % 313 %

24 4 30 % 296 %

30 4 37 % 326 %

6 8 31 % 99 %

10 8 28 % 180 %

14 8 37 % 189 %

16 8 25 % 248 %

18 8 32 % 202 %

20 8 33 % 235 %

24 8 26 % 268 %

30 8 33 % 379 %

between optimal solutions and the points which minimize the underestimate of
the Lagrangian relaxation. The relative proximity of the optimal solutions and the
solutions to the initial LagInt relaxation does not necessarily imply better branching
decisions, but it would intuitively appear to be advantageous. This behavior could
be a result of the structure and parameters of the test problems.

The test problems sought to answer whether or not Lagrangian underestimates
could generate sufficiently tight bounds to enable a branch-and-bound algorithm
to solve nonconvex programs in a reasonable amount of time. When used in con-
junction with other techniques for facilitating convergence, the results indicate that
they can, at least for problems of the given structure.

6. Conclusions and future work

The results presented in the previous section are by no means intended to demon-
strate that LagInt is the best algorithm available for solving QCQP. In other tests,
LagInt did not perform as well as RLT on problems with less favorable struc-
ture. Intuitively, LagInt would seem to be an attractive approach for nonconvex
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programs whose quadratic forms are defined by relatively sparse matrices. This
intuition is supported by its strong performance on the test problems, since they
would be included in this category. Additionally, LagInt is attractive because it
does not require the solution of linear programming subproblems.

Several directions are available for additional research:
(1) Improving the LagInt algorithm.
(2) Analyzing and applying the LagInt algorithm to new problems.
(3) Integrating LagInt with more established approaches such as RLT.
Initial work has demonstrated the viability of a global optimization algorithm that
employs Lagrangian underestimates to generate lower bounds on the optimal ob-
jective function value. Additional work could provide greater insight with respect
to computational issues that impact the efficiency of the algorithm.

Of all the implementation issues that could be addressed, one that stands out is
the method used to update the dual variables. Using deflection directions proved
to be an improvement over subgradients. Sophisticated techniques that have been
applied to Lagrangian dual problems could prove to provide further advantages.
Dual ascent algorithms have been successful for certain kinds of problems [25].
This approach is considered to be especially suitable for branch-and-bound, but
must be tailored to the individual application [9]. Bundle methods have also worked
well, and in some cases have been used along with subgradient directions [13].

Secondly, additional understanding of the strengths and weaknesses of the La-
gInt algorithm would help to determine in which contexts this approach could best
be employed. Nonconvex problems with special structures, such as those men-
tioned in the first section, would seem to be the most suitable types of applications
for the LagInt algorithm.

Finally, as more is learned about this approach, it could be used in connection
with other methods within a branch-and-bound framework. Typically, it requires
several iterations to establish good estimates of the Lagrange multipliers. Thus,
in the early stages of the branch-and-bound tree, the algorithm generates relat-
ively poor lower bounds. Perhaps Lagrangian underestimates could be strategically
employed at later stages of the branch-and-bound process, when good multiplier
estimates have been obtained via RLT or some other relaxation strategy.

Acknowledgements

The author thanks an anonymous referee whose insightful comments resulted in a
substantially improved document.

References

1. Adjya, N., Tawarmalani, M. and Sahinidis, N.V. (1999), A Lagrangian Approach to the Pooling
Problem, Industrial & Engineering Chemistry Research 38, 1956–1972.



A GLOBAL OPTIMIZATION ALGORITHM USING LAGRANGIAN UNDERESTIMATES 369

2. Al-Khayyal, F.A., Horst, R. and Pardalos, P.M. (1992), Global Optimization of Concave Func-
tions subject to Quadratic Constraints: An Application in Nonlinear Bilevel Programming,
Annals of Operations Research 34, 125–147.

3. Barrientos, O. and Correa, R. (2000), An Algorithm for Global Minimization of Linearly
Constrained Quadratic Functions, Journal of Global Optimization 16, 77–93.

4. Bazaraa, M.S., Sherali, H.D. and Shetty, C.M. (1993), Nonlinear Programming Theory and
Algorithms, John Wiley & Sons, New York.

5. Ben-Tal, A., Eiger, G. and Gershovitz, V. (1994), Global Minimization by Reducing the Duality
Gap, Mathematical Programming 63, 193–212.

6. Dur, M. and Horst, R. (1997), Lagrange Duality and Partitioning Techniques in Nonconvex
Global Optimization, Journal of Optimization Theory and Applications 95, 347–369.

7. Falk, J.E. (1969), Lagrange Multipliers and Nonconvex Programs, SIAM Journal of Control 7,
534–545.

8. Floudas, C.A. and Visweswaran, V. (1993), Primal-Relaxed Dual Global Optimization Ap-
proach, Journal of Optimization Theory and Applications 78, 187–225.

9. Guignard, M. and Rosenwein M.B. (1989), An Application-Oriented Guide for Designing
Lagrangean Dual Ascent Algorithms, European Journal of Operational Research 43, 197–205.

10. Horst, R. and Raber, U. (1998), Convergent Outer Approximation Algorithms for Solving
Unary Problems, Journal of Global Optimization 13, 123–149.

11. Kearfott, R.B. (1996), Rigorous Global Search: Continuous Problems, Nonconvex Optimization
and Its Applications 13, Kluwer Academic Publishers, Dordrecht.

12. Khammash, M.H. (1996), Synthesis of Globally Optimal Controllers for Robust Performance
to Unstructured Uncertainty, IEEE Transactions on Automatic Control 41, 189–198.

13. Kohl, N. and Madsen, O.B.G. (1997), An Optimization Algorithm for the Vehicle Routing
Problem with Time Windows Based on Lagrangian Relaxation, Operations Research 45, 395–
406.

14. Kuno, T. and Utsuomiya, T. (2000), A Lagrangian Based Branch-and-Bound Algorithm for
Production-Transportation Problems, Journal of Global Optimization 18, 59–73.

15. Li, D. and Sun, X.L. (2000), Local Convexification of the Lagrangian Function in Nonconvex
Optimization, Journal of Optimization Theory and Applications 104, 109–120.

16. Lodwick, W.A. (1992), Preprocessing Nonlinear Functional Constraints with Applications to
the Pooling Problem, ORSA Journal on Computing 4, 119–131.

17. Preisig, J.C. (1996), Copositivity and the Minimization of Quadratic Functions with Nonneg-
ativity and Quadratic Equality Constraints, SIAM Journal on Control and Optimization 34,
1135–1150.

18. Ryoo, H. S. and Sahinidis, N. V. (1996), A Branch-and-Reduce Approach to Global Optimiza-
tion, Journal of Global Optimization 8, 107–138.

19. Salapaka, M.V., Khammash, M. and Van Voorhis, T. (1998), Synthesis of Globally Optimal
Controllers in �1 using the Reformulation–Linearization Technique, Proceedings of the IEEE
Conference on Decision and Control, Tampa, FL, December 1998.

20. Sherali, H.D. and Tuncbilek, C.H. (1997), New Reformulation Linearization/Convexification
Relaxations for Univariate and Multivariate Polynomial Programming Problems. Operations
Research Letters 21, 1–9.

21. Sherali, H.D. and Tuncbilek, C.H. (1995), A Reformulation-Convexification Approach for
Solving Nonconvex Quadratic Programming Problems, Journal of Global Optimization 7,
1–31.

22. Sherali, H.D. and Tuncbilek, C.H. (1992), A Global Optimization Algorithm for Polynomial
Programming Problems Using a Reformulation–Linearization Technique, Journal of Global
Optimization 2, 101–112.



370 TIM VAN VOORHIS

23. Thng, I., Cantoni, A. and Leung, Y.H. (1996), Analytical Solutions to the Optimization of
a Quadratic Cost Function subject to Linear and Quadratic Equality Constraints, Applied
Mathematics and Optimization 34, 161–182.

24. Tuy, H. (1997), Convex Analysis and Global Optimization, Nonconvex Optimization and Its
Applications 22, Kluwer Academic Publishers, Dordrecht.

25. Van de Velde, S.L. (1995), Dual Decomposition of a Single-Machine Scheduling Problem,
Mathematical Programming 69, 413–428.

26. Visweswaran, V. and Floudas, C.A. (1990), A Global Optimization Algorithm (GOP) for Cer-
tain Classes of Nonconvex NLPs-II. Application of Theory and Test Problems, Computers and
Chemical Engineering 14, 1419–1434.

27. Wah, B.W. and Wang, T. (1999), Efficient and Adaptive Lagrange-Multiplier Methods for
Nonlinear Continuous Global Optimization, Journal of Global Optimization 14, 1–25.


